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ABSTRACT. A sequence A = {ai} of positive integers a, < a2 < * * is said to 
be primitive if no term of A divides any other. Let Q(a) denote the number 
of prime factors of a counted with multiplicity. Let p(a) denote the least 
prime factor of a and A(p) denote the set of a E A with p(a) = p. The 
set A(p) is called homogeneous if there is some integer sp such that either 
A(p) = 0 or Q(a) = sp for all a E A(p). Clearly, if A(p) is homogeneous, 
then A(p) is primitive. The main result of this paper is that if A is a positive 
integer sequence such that 1 0 A and each A(p) is homogeneous, then 

Z . log < forn> 1. a log a p og a<n, aEA p<n, p pnme 

This would then partially settle a question of Erdos who asked if this inequality 
holds for any primitive sequence A . 

1. INTRODUCTION 

A sequence A = {ai} of positive integers a, < a2 < ... is said to be primitive 
if no term of A divides any other (cf. [3] or [5]). We denote by pm the mth 
prime, by p a variable prime and by p(a) the least prime factor of a. We 
define the degree of an integer a, denoted by Q(a), to be the number of prime 
factors of a counted with multiplicity. The degree of an integer sequence A, 
denoted by d?(A), is defined as the maximum degree of its terms. We take 
d?(A)=O if A={l} or 0. 

For a primitive sequence A with d?(A) > 0 we define 

f(A) = E 1/(aloga). 
aEA 

We take f(A) = 0 if d?(A) = 0. Erdos [1] proved that there exists an absolute 
constant C such that f(A) < C for any primitive sequence A. Recently he 
[2] has asked if the inequality 

(1) I~~~ 
1 for n>1I (1) 

Z~~~~ aloga - ~ p logp 
a<n,aEA p?n,ppnme 
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is always true for any primitive sequence A . Zhang [8] proved that if A is prim- 
itive with d?(A) < 4, then the inequality is true. Erdos and Zhang [4] proved 
that f(A) < 1.84 for any primitive sequence A, and gave a necessary and suffi- 
cient condition for the inequality (1), namely EbEB 1 /(b log b) < E 1 /(p logp) 
for any primitive sequence B. Clearly, if (1) is true then C = l/(p logp) < 
1.64. 

In this paper we partially settle this question of Erdos in another direction. 
To give our result, we need some more notation and concepts. Let A(p) denote 
the set of a E A with p(a) = p . A sequence B is called homogeneous if either 
B = 0 or Q2(b) = d?(B) for all b E B. Clearly, if B is homogeneous, then B 
is primitive. Now we state our main result as the following 

Theorem. If A is a positive integer sequence such that 1 , A and each A(p) 
is homogeneous, then the inequality (1) is true. 

The basic idea for proving the theorem is the same as that used in [8]; i.e., 
we consider the least prime factors of the terms of A. The key point of this 
paper is to prove that, for a given prime p, if B = B(p) is homogeneous and 
nonempty, then 

bEB blogb plogp- 
It is clear that (2) immediately implies the theorem. In fact we have the stronger 
result where "a < n" is replaced in (1) with "(a, n!) > 1". 

2. PROOF OF THE THEOREM 

We first define two functions: 

w(s,m) = 1 
Q(a)=s-1, p(a)>P,+alog(pm+I a) 

for integers s > 2, m > 0, and 

Z Ppilog(i - 1) 

for integers m > 2. 
We need nine lemmas. 

Lemma 1. We have pn > nlogn for n > 1 and pn < n(logn + loglogn) for 
n > 6. 

These results may be found in [6] and [7]. 
Lemma 2. We have h(m) < 1/logim for mi> 2. 
Proof. Note that for each i > 3, we have 

1 log(i/(i - 1)) I_ 1 1 
ilogilog(i - 1) logilog(i - 1) log(i - 1) logi 

Thus, from Lemma 1, 

hm M ilogilog(i- 1) <E (log(i - 1) log) = logm 

In the following we define i(a) = i if the largest prime factor of a is pi. 
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Lemma 3. For m > 2, s > 1, we have 

(a)> Q(a) a log(i(a) - 1) - h(m) < 10gm 

Proof. We proceed by induction on s. If s = 1, then this is just Lemma 2. 
Assume the lemma for s. For the s + 1 case, we have, by Lemma 2, 

1 
a log(i(a) -1l) 

= 1 
p(a)>pm,, Ql(a)=s+l a1o(()-1 

p(b)>pm, Q(b)=s b?i(b) Pj log(j - 1) 

p(b)>pm, Q(b)=s blog(i(b) - 1) logm 

Lemma4. For i > 2, B > 2, wehave 

1 log(l +logB/logi) 
jP log(Bpj) logB 

logi' elogi + elogB}J 

where e = 2.718--. is the base of the natural logarithms. 
Proof. We have, by Lemma 1, 

E 1 < [?0 dx 

jpjlog(Bpj) <I xlogxlog(Bx) 

log(l+logB/logi) <min. 1 1 + 1 
logB - logi' elogi elogB| 

observing that the last inequality follows from 

log(l + x) < x and logx = 1 + log(l + (x - e)/e) < x/e 

for all x > O. O 

Lemma 5. For m > 2, B > 2, s > 2, we have 

1 

U u log(Bu) 

< (e-1 +** + el-s)h(m) + el-s 1 (Bp) 

Proof. We proceed by induction on s. If s = 2, then we have, by Lemma 4, 
E ~~~1 E1 1 

S u log(Bu) - i Z Z Pklog9(Bp]Pk) 
P(u)>pm, Q(u)=2 j>m k>j 

<e-h(m)+e-15 1(Bp) 
j>m 
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For the s + 1 case, we have, by Lemmas 3 and 4 and the s case, 

P()P,QU=+ u log( Bu ) p(b) >p,, 0(b)=s b j>iz(b) Pj lo(bj 

p(b)Z,p, Q(b)=sb log(i(b)-)1) log(Bb) z 

< (e-l + ..+ e-s)h(m) + e-s E 1 0l 
j> jlog(Bpj) 

Lemma 6. For m > 5, s > 2, we have w(s, m) < l/logpm+i . 
Proof. We have, by Lemmas 2, 4, and 5, 

W(S, m) < W(s, m), 

where 
W(s, m) = e + . +el-s el1s 

W(s,m)= login logPM+i 
By Lemma 1 we have 

logpM+1 < log(m + 1) + log(log(m + 1) + log log(m + 1)) 
log m log m 

< log6 + log(log6 + loglog6) - 1.65... <e- 1. 

log 5 

Thus, 

W(s, m) - W(s + 1, m) = e-S ( e _1 )> O 

for m > 5, s > 2. Therefore, 

W(s, m) < W(s, m) < W(2, m)=e1ogm + elogp 

e-1 1 _ 1 e l?gp+l e ?gpm e logm + elop 1 
< 

e - 
+-.E 

elogpm,+l e logpm+ I log Pm+1 

Lemma 7. For 0 < m < 4, we have w(2, m) < l/logpm+i. 
Proof. We have, by Lemma 4, 

w(2, m) < w(m) for 0 < m < 4, 

where 

w(m) 1 +1 
PM+ 1log(p241) Pm+2 10g(Pm+lPm+2) 

+ I log (1 + 1 (gPM++2 for I < m < 4 logM+ l1+ ogpm + 2 

and 

w(0) =lo4+ + + Itog I+lo2 
2 log 4 3 log 6 5 log 10 log 2 log 3 

By calculation we have Table 1. 
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TABLE 1 

m w (m) Pm+l 1/logpm+i 
4 0.388 ... 11 0.417 ... 
3 0.464 ... 7 0.513 ... 
2 0.581... 5 0.621... 
1 0.856... 3 0.910... 
0 1.339... 2 1.442... 

Thus, w(2,m)<w(m)< 1/logpm+I for 0<m<4. El 

Lemma 8.1. For s > 3, 2< m < 4, we have w(s, m) < l/logpm+ . 
Proof. For a fixed m, put 

y = (e- + m + e2-s)h(m) + e2-sW(M) 

where w(m) is the upper bound of w(2, m), defined in the proof of Lemma 
7. Then by Lemma 5 we have for s > 3 that 

w(s, m) < (e 1 + + e2s )h(m) + e2-sw(2, m) < ys. 

If h(m)/w(m) < e - 1 and m < 4, then we have, from Table 1, 

yS < ((e-l + + e2-s)(e - 1) + e2-s)w(m) = w(m) < 1/logPm+i . 

For m = 4, we have, by Lemma 2, 
10 1 

h(4) = E plog(i - 1)+ h(10) <0.6442, 

using h(10) < 1/log 10. Thus, h(4)/w(4) < 1.7 < e - 1, so that the case 
m = 4 is done. 

For m = 3 we have 

h(3)= 1/(71og3) + h(4) < 0.7743, and h(3)/w(3) < 1.7 < e - 1. 

Thus the m = 3 case is done. 
For m = 2, since 

h(2) = 1/(5 log 2) + h(3) < 1.063, 

we use the upper bound H = 1.063 for h(2) and we see that 

H/w(2) > e - 1. 

However, we then have 

Ys<(e- +...+e2-s)H+e 2-s H 
= <0.62<1/log5, e-1 e-1 

so that the m = 2 case is done. 0 

Lemma 8.2. We have w(s, 1) < 1/ logp2 for s > 3. 
Proof. We have w(s, 1) = u(s) + v(s), where 

u(s) = E blog(9b) and v(s) = blog(3b)E 

p(b)>P2 p(b)>p3 
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Taking 
25 11 

h(2) < E pilog(i- 1) +log25 < *0396 

and 
1 25 1 1 1.0396 

Z P log(3p ) < E + < 0.5779 < 
i>2 pilog(3pi) _= pi og(3p1) log 25 e-1I 

we have, by Lemma 5, 

v(s) < 1.0396(e-1 + + e 0.5779e2-s < 10396 < 0.6051 <2/3 

Since w(2, 1) < 1/log 3 by Lemma 7 and u(s) <w(s - 1, 1)/3, we have, for 
s> 3, 

w(s, 1) < w(s - 1, 1)/3 + v(s) < (1/3)/log3 + (2/3)/log3 = 1/log3. o 

Lemma 8.3. We have w(s, 0) < 1/ log2 for s > 3. 
Proof. Put 

u1(s) = _1 for 1 <i< 9 
Pi 2(b)=s-2,p(b)>p blog(2pib) 

and 

v1(s) = 1 for l < i < 10. 
I:~ b log(2b) 

Q2(b)=s-1, p(b)>p, 

Then for 1 < i < 9, we have 

( 3) vi (s) = ui(s)+ vi+ 1(s) 

and 

(4) uj(s) < i( 1). 
Pi 

Let N= 800. Put 
N 11 

h=Zp.log(jl) + logN < 0.403693 
i=10P Og 1 loN 

and 
N 11 

io0pilog(2p1) logN<0.306441. 

Then 

h(9) < h and <1 ) 
i>9Pilg2) 

We have, by Lemma 5, vIo(s) < VIo(s), where 

VIo(s) = (e-1 + . . . + e2-s)h + e2-sg. 

By calculation we get the upper bounds of VIo(s), for 3 < s < 9, listed in Table 
2, which serve as upper bounds of vIo(s) for 3 < s < 9. 
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By Lemma 4 we have 

i~(3) Pi (Piplogj2PiPi) logN) 

By calculation we get the upper bounds of uj(3), for 1 < i < 9, listed in Table 
2. 

Since we now have upper bounds for vIo(3) and ui(3), we can, by equation 
(3), get upper bounds of vi(3) for i = 9, 8, ... , 2, 1. Then, by equation (3), 
inequality (4) and the upper bounds of v10(s), we can get upper bounds of 
vi(s) for i = 9, 8, ..., 2, 1; s = 4, 5, ..., 9. 

In this way we get upper bounds (listed in Table 2) of 

w(s, 0) = vl(s) < 1/log2 for 3 < s < 9. 

In the above calculations we also get the upper bounds of vi(9), for 1 < i < 
10, listed in Table 2. 

Let k1 = 1/ log 2 and 

ki= - 2/p-) for 2<i< 10. 
log 2 

We list the values of ki, for 1 < i < 10, in Table 2. 

TABLE 2. Upper bounds of VIo(s), ui(3), w(s, 0) =v1(s) and 
vi(9); and values of ki 

s or i Vio(s) ui(3) w(s,0 ) = vI(s) Vi(9) ki 
1 0.4264 1.4412 1.4426... 
2 0.1885 0.7204 0.7213... 
3 0.2613 0.0843 1.1049 0.4795 0.4808... 
4 0.2447 0.0512 1.2814 0.3835 0.3847... 
5 0.2385 0.0287 1.3787 0.3286 0.3297... 
6 0.2363 0.0228 1.4224 0.2987 0.2997... 
7 0.2355 0.0164 1.4380 0.2757 0.2767... 
8 0.2352 0.0141 1.4417 0.2595 0.2604... 
9 0.2351 0.0112 1.4412 0.2458 0.2467 ... 
10 0.2351 0.2360... 

We see that 

(5) vi(9) <ki forlI< i <10. 

Since V10(9) < klo and V1o(s + 1) - V10(s) =el-s(h - (e - I)g) < 0, we have 

(6) vlo(s) < V1o(s) < klo for s > 9. 

For i = 9 down to 1, for s = 9, 10, ..., we have, by (3), (4), (5), and (6), 

vj(s + 1) < it)+ Vi+l(s + 1)< 
ki 

+ kj+j = ki. 
Pi P 

Thus, w(s, 0) = vI(s) < k1 = 1/log2 for s > 9. U1 

Combining Lemmas 8.1, 8.2, and 8.3, we have the following 
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Lemma 8. We have w(s, m) < 1/logpm+I for s > 3, 0 < m < 4. 

Lemma 9. For a given prime p, if B = B(p) is homogeneous and nonempty, 
then 

Z blogb - p logp 
bEB 

Proof. This follows from Lemmas 6, 7, and 8. 0 

As we have seen above, Lemma 9 immediately implies the theorem. 
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